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PARTIAL DIFFERENTIAL EQUATIONS

High dimensional PDEs in physics and mathematics:

mechanics (Hamilton-Jacobi, Schrödinger, Navier-Stokes),

electromagnetism (Maxwell),
financial mathematics (Black-Scholes):

derivative pricing,
optimal trade execution,
risk management of options,
optimal asset allocation.

NUMERICAL METHODS

Finite differences

Discretization in space and time.

Curse of dimensionnality

N ∼ O(ε−d) for |f − f N| < ε
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Monte Carlo

Only point evaluation.
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1: Nonlinear PDEs

ut = ϕ(t, x , u,∇u)− µ(t, x , u,∇u)T∇u − 1

2
Tr

[
σ(t, x , u)σ(t, x , u)T∇2u

]

2: Forward-Backward SDEs

dXt = µ(t,Xt,Yt,Zt)dt + σ(t,Xt,Yt)dWt, X0 = ξ

dYt = ϕ(t,Xt,Yt,Zt)dt + ZT
t σ(t,Xt,Yt)dWt, YT = g(XT)

Equivalent to the above PDE, with Yt = u(t,Xt) and Zt = ∇u(t,Xt).
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3: Discretization in time

Xn+1 ≈ Xn + µ(tn,Xn,Yn,Zn)∆tn + σ(tn,Xn,Yn)∆Wn

Yn+1 ≈ Yn + ϕ(tn,Xn,Yn,Zn)∆tn + ZT
n σ(tn,Xn,Yn)∆Wn

4: Neural network

Y0,Z0

Neural network uΘ

(t0, X0)

Y1,Z1

Neural network uΘ

(t1, X1)

. . .

YN,ZN

Neural network uΘ

(tN, XN)

Θ: shared parameters through time,

Zn: computed using auto-differentiation.

5: Loss function - Minimize approximation error

min
Θ

M∑
m=1

N−1∑
n=0

|Y m
n+1(Θ)− Y m

n (Θ)− ϕ(tn,X
m
n ,Y

m
n (Θ),Zm

n (Θ))∆tn

− (Zm
n (Θ))Tσ(tn,X

m
n ,Y

m
n (Θ))∆W m

n |2 +
M∑

m=1

|Y m
N (Θ)− g(Xm

N )|2

M : number of trajectories (batch size),

N : number of time steps.

6: Results for Black-Scholes equation in 100 dimensions

Eg: g(x) =‖x‖2 leading to the closed-form solution u(x , t) = e(r+σ2)(T−t)‖x‖2.
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7: Open problems

Generalisation: is approximation sensitive to initial value?

Stability parameters: are same parameters close to optimal?

Computational efficiency: how to speed-up the process?

ARCHITECTURE

ResNet

Defined by:

x(k + 1) = x(k) + f (x(k), θ(k))

x(k): output of the k th layer,

θ(k): parameters of the k th layer,

f : a nonlinear transformation.

NAIS-Net

A non-autonomous input-output stable
neural network:

x(k + 1) = x(k) + hσ(Ax(k) + Bu + C )

A, B, C: trainable parameters,

u: makes the system non-autonomous,
and the output input-dependent.

COMPUTATIONAL EFFICIENCY: MULTILEVEL

The discretization scheme, at level l , is:

Xn+1 = Xn + a(tn,Xn)h + b(tn,Xn)∆Wn

where hl = h0M
−l with h0 the initial step size and M the ratio between two levels.

Results: The convergence is on average 10x faster.
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STABILITY & GENERALISATION

Smoother loss functions

Results: Loss functions are smoother
for ResNet and NAIS-Net.
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Generalisation

Results: Improved generalisation with
NAIS-Net.
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