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High dimensional PDEs in physics and mathematics:
m mechanics (Hamilton-Jacobi, Schrodinger, Navier-Stokes),

Curse of dimensionnality

Monte Carlo

_ Discretization in space and time. N ~ O(e_d) for |[f — f’V‘ < € Only point evaluation.
m electromagnetism (Maxwell),
m financial mathematics (Black-Scholes): do 1
m derivative pricing, N I T I:I ’ ',/")G _______ .
m optimal trade execution, I I S T N S ——o ‘ ’
m risk management of options, I S S S N B d=1 d = d =3 .
m optimal asset allocation. I

DEEP BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS

1: Nonlinear PDEs

5: Loss function - Minimize approximation error

@ PDEs _ T L Tx72 M N-1
u = o(t,x,u, Vu) — u(t,x,u, Vu) Vu — = Tr |o(t, x, u)o(t,x,u) V-u _ - - o m -
= )= )V Trlotexualex ) IV Ny (0) - @) — (e X0 V(@) Z(O)A,
m=1 n=0
:
s — (Z7(0)) ot X7 Y(O)DAWST + . ¥57(0) — )]
9 FBSDEs dXt — ,u(t, Xt7 Yt7 Zt)dt T U(t7 Xt7 Yt)dWh XO — f m=1
dY: = o(t, Xe, Ye, Zp)dt + ZtTU(ta Xi, Yi)dW,, Y7 = g(X7) m M: number of trajectories (batch size),

Equivalent to the above PDE, with Y; = u(t, X;) and Z; = Vu(t, X;).

m N: number of time steps.

6: Results for Black-Scholes equation in 100 dimensions
€© Discretization

Eg: g(x) =||x||? leading to the closed-form solution u(x, t) = el t7)}(T=1)]|x||2.
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3: Discretization in time 75 | T
ad
| Xoa1 = X, + pu(ty, Xn, Yo, Z))At, + o(t,, X, Vo) AW, — Eadt
© Loss function Yoi1 & Yo+ o(ta, Xn, Yo, Zo) Aty + Z) 0(tn, Xo, Ya) AW, 70 | |--Learned
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4: Neural network ; ;
Yo, £o Y1, 41 Yn, Zn
O Results { { l t 7: Open problems
Neural nitwork ug | | Neural nitwork ug | -+ | Neural nitwork o m Generalisation: is approximation sensitive to initial value?
(to, Xo) (11, X)) (tn, Xn) m Stability parameters: are same parameters close to optimal?
| ’* 'f m Computational efficiency: how to speed-up the process?
7 Open problems |
m O: shared parameters through time,
m /,. computed using auto-differentiation.
ARCHITECTURE STABILITY & GENERALISATION
NAIS-Net Smoother loss functions
Defined by: A non-autonomous input-output stable Results: Loss functions are smoother Results: |Improved generalisation with
x(k + 1) = x(k) + f(x(k), 0(k)) neural network: for ResNet and NAIS-Net. NAIS-Net.
x(k+ 1) =x(k)+ ho(Ax(k) + Bu + C » » »
| X(k): output of the kth Iayer, ( ) ( ) ( ( ) ) — Fully-connected 2 - o
H 6’(/{) parameters of the kth layer, m A B, C: trainable parameters, 105 B NRA?ZITIﬁtet | — 15| :- ] yli(;cs)lr\llr;ic )
m f: a nonlinear transformation. m u: makes the system non-autonomous, S £ 1 & NAD-Net
and the output input-dependent. = S ,
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COMPUTATIONAL EFFICIENCY: MULTILEVEL ‘
: : : : 101 ¢ ‘ ‘ | ] 0
he discretization scheme, at level / is: 0 0.5 ) 1t. 1.5 » 2 0 01 00 03 04 o5
_ eration :
Xnr1 = Xo + a(tn, Xn)h + b(tn, Xo) AW, Relative distance to the initial
where hy = hyM~" with hy the initial step size and M the ratio between two levels. condition used for training (%)

Results: The convergence is on average 10x faster.
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