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1. Introduction

Bandits

Multi-armed bandits are everywhere:
• clinical trials,
• A/B testing,
• ad placement,
• recommender system,
• dynamic pricing,
• . . .

There are enjoying a revival, following the latest
booming in reinforcement learning.

A simple setup, but powerful and very rich
mathematically.

Drawing showing the idea of pulling
multiple arms.
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1. Introduction

General setup

The setup is defined by:

a finite action set A = {1, 2, ..., k} corresponding to the arms,
for each a ∈ A, there is an unknown distribution Pa with mean µa.

From the learner perspective:

activate arm At ∈ A and observe a reward Rt ∼ Pa,
maximise the total reward

∑n
t=1 Rt .

rt ll
1 2 3

At A 3 2 2 1 2

Rt 1.0 0.3 2.7 1.2 0.8 0.3

rt ll
1 2 3

At A 3 2 2 1 2

Rt 1.0 0.3 2.7 1.2 0.8 0.3

An example of unknown distributions and a sequence of actions/rewards.
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1. Introduction

Learning objective

The idea is to find the distribution with the higher mean µ∗.

The optimal action is defined as a∗ = arg maxa µa.

Strategies are evaluated by a metric called the regret (the lower the better):

Rn = nµ∗ − E

[
n∑

t=1

Rt

]

that evaluate the cost of not knowing µ∗.

How do we choose the next action? Trade-off exploration vs exploitation.
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1. Introduction

Trade-off Exploration vs Exploitation

Exploration: trying different actions to make sure we
do not miss the best one.

Exploitation: choosing the same action over and over
to maximise our reward.

There are two main problems with exploitation:

The rewards are sampled from a distribution, so even
the arm with the best mean µ∗ can still provide poor
rewards sometimes.

Distributions may change with time, and our policy has
to adapt. It is the particular case of non-stationary
bandits.
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Distributions evolving with time.
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1. Introduction

Main types of bandits

MAB

Stochastic
iid sequence of random variables

Algo: ε-greedy, UCB, . . .

Adversarial
No assumption on the
distribution of the RV

Algo: EXP3, . . .

Markovian/Bayesian
Concept of prior/posterior
Algo: Thomson sampling,

Gittins indexes, . . .

Contextual
Strategy depends on context (RL)

Algo: ε-greedy, EXP4, . . .

Linear
Linear structure of the reward

Algo: Miror descent, EXP2, . . .
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2. Stochastic bandits

Framework

Stochastic assumptions

Let k different arms, and n ≥ k rounds. The probability distribution P1, . . . ,Pk are
unknown. The process is the following:

1. the learner chooses a ∈ {1, . . . , k},
2. the reward Ra,t is given independently from the past.

Examples of possible distributions:

Pa ∼ B(µa): Bernoulli with unknown mean µa ∈ [0, 1],

Pa ∼ N (µa, 1): Gaussian with unit variance and unknown mean µa ∈ R,

Pa is sub-Gaussian (tails dominated by Gaussian),

. . .
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2. Stochastic bandits

ε-greedy algorithm

ε-greedy policy

At each round the best greedy action is selected (the one the largest empirical
expected reward), but with probability ε, a random action is chosen (excluding the
best greedy one). The action At taken at round t is:

At =

 arg max
a
{E[µa]} with probability 1− ε

a randomly with probability ε

The greater ε, the greater the exploration. Variants exist where ε decays with time
to encourage exploration only at the beginning.
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2. Stochastic bandits

Example (1/3)

Let 10 arms with Gaussian distribution N (µa, 1). The algorithm is the following:

1. choose arm according to ε-greedy policy,

2. get reward Ra,t from arm a at time t,

3. update expected reward according to: E[µa]← E[µa] + α(Ra,t − E[µa]) with
α = 1/Ta and Ta the number of time action a has been chosen.

Hyperparameters

ε: controls the exploration. High values of ε lead to better exploration.

α: controls the importance given to present rewards as opposed to past ones.
High values of α mean a tendency to forget very quickly. Can be useful for
non-stationary bandits.
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2. Stochastic bandits

Example (2/3)
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Arm chosen (on top), trials per arm (on the left), and
evaluated/real (dot) mean (on the right) for ε = 0.1.
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Arm chosen (on top), trials per arm (on the left), and
evaluated/real (dot) mean (on the right) for ε = 0.5.

11/28



2. Stochastic bandits

Example (3/3)
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Reward for ε ∈ {0.1, 0.01, 0.001} through 1000 iterations, averaged over 1000 experiences for a 10-armed bandit
with unit variance and unknown means. On the left α is equals to the number of trials per arms whereas on the
right α = 0.1 which enables the learner to quickly learn the new best distribution after a random permutation
between arms that occurs at iteration 500.
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2. Stochastic bandits

Upper Confidence Bound

Intuition: the more we sample from an arm, the more confident we are in our
evaluation of its mean.

Using Hoeffding inequality, with u the confidence radius:

P (µ ≥ E[µ] + u) ≤ e−2Tu2

If instead, we define δ such that:

P

(
µ ≥ E[µ] +

√
log(1/δ)

2T

)
≤ δ

And then, choosing δ = 1/t4:

P

(
µ ≥ E[µ] +

√
2 log(t)

T

)
≤ 1

t4
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2. Stochastic bandits

Toward an algorithm: UCB1

UCB1 policy

At each round the arm with the largest Upper Confidence
Bound is selected.

At = arg max
a

E[µa] +

√
2 log(t)

Ta


When Ta increases, our knowledge becomes more accurate
and the confidence radius decreases.

On the other hand, the confidence radius still increases
with time t, letting an opportunity for the non top arms to
be selected again later on.

Even if the second arm has a
better mean, the algorithm
chooses to pull the first one
here, since it has not tried it
a lot and could still provide
the best rewards.
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2. Stochastic bandits

Example
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Reward (on the left) and regret (on the right) for UCB1 and ε-greedy policies with ε = 0.01 through 1000
iterations, averaged over 1000 experiences for a 10-armed bandit with Gaussian (unit variance and unknown
means). Note that, contrary to ε-greedy policy, there is no hyperparameter to tune for UCB1.
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3. Bayesian framework

Framework

Bayesian assumptions

Let k different arms, and n ≥ k rounds. In the Bayesian framework, the probability
distribution P1, . . . ,Pk are likelihoods of the model, depending on a prior. The
process is the following:

1. the learner makes an assumption on the likelihood and prior distributions,

2. the reward Rt ∼ likelihood provides information to update his belief on the prior
and ultimately the probability distributions P1, . . . ,Pk

The Bayesian regret is defined as:

BR =

∫
RdQ

where Q is the prior.
We usually chose a conjugate prior so that the posterior is tractable.
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3. Bayesian framework

Thompson sampling

Thompson sampling or Posterior sampling

At each round t, sample from the posterior distribution. The arm that gives the
higher result is selected:

At = arg max
a
{P(θa|Xa)}

where θ is our prior set of parameters.

Practically speaking, the idea is to update the prior distribution with the posterior
distribution. This means updating our belief on the prior taking into account the
lastest data:

P(θ|X ) =
P(X |θ)P(θ)

P(X )
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3. Bayesian framework

Example (1/2)

Let a Bernoulli bandit with three arms. This means the likelihood of the model is
Bernoulli distributed. The conjugate prior is the Beta distribution which characterises
our belief on the mean of the Bernoulli law (its unique parameter). In this case, the
posterior is also a Beta distribution.

1. choose arm according to Thompson sampling,

2. get reward Ra,t ∼ B(µa) from arm a at time t,

3. assuming the prior is µa ∼ Beta(α, β), update the posterior distribution
according to:

µa|Ra,t ∼

{
Beta(α + 1, β) if Ra,t = 1

Beta(α, β + 1) if Ra,t = 0

4. take the posterior as the prior of the next step.
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3. Bayesian framework

Example (2/2)
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Density of the prior of the three arms for different value of t. Note that at the very beginning, the densities
correspond to uniform laws [0, 1] since we do not have any information. With time, your knowledge increases so
the mean of the Bernoulli law we try to evaluate becomes more accurate. Note also, since we want to exploit
the arm giving the best reward, your knowledge becomes more and more precise on this particular arm, leading
to a very narrow distribution (in red).
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4. Contextual bandits

Framework

Contextual assumptions

Let k different arms, and n ≥ k rounds. The probability distribution P1, . . . ,Pk are
unknown but depend on the a context x . The process is the following:

1. the learner observes a context xt ,

2. the learner picks an arm a ∈ {1, . . . , k},
3. the reward Ra,t is realised.

One simple idea is to use independent algorithm for every context.
The expect reward is now the following:

R = REW (π∗(x))−
n∑

t=1

µ(at |xt)

where REW (π∗(x)) is the reward of the best policy.
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4. Contextual bandits

Example(1/3)

Let a Bernoulli bandit with two arms. In this setup, the context influences the
probabilities of the Bernoulli law of the arms. We model this effect by defining the
probability as a logistic regression of the context x ∈ R, where the parameters θ are
unknown for the learner and ε ∼ N (0, 1).

pa(x) =
1

1 + e−θax−ε

Again, for convenience, the context is only model by a unique variable x , and the
logistic regression has only one parameter.
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4. Contextual bandits

Example(2/3)

The procedure is the following:

1. Observe rewards for different
combinations of arms and contexts.

2. Create a dataset for each arm by taking
subsets of the collected data.

3. Train a model on each dataset
(supervised learning), and predict the
reward for the current context.

4. Pull the arm giving the higher prediction.

RA
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Context Arm Reward

0.1 n A Context Reward

0.2 A O 0.1 A
O.O 2 O 0.2 0dataseta
0.4 A 1 0.4 1
0.1 2 A 0.3 A
0.3 1 A
0.2 2 1 Context Reward

o.O 0
dataset 2

0.1 A
0.2 1

Construction of the two datasets through time.
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4. Contextual bandits

Example (3/3)
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The mean of both arms is model as the sigmoid
function of the context x . For x ≥ 0, the best strategy
is to pull arm 1 whereas arm 2 provides the best reward
when x < 0.

0 100
1

2

Iteration

A
rm

0 100
−1

0

1

Iteration

x

Arm chosen (on top) depending on the context
(bottom). Choosing arm 1 for x ≥ 0 leads to a better
strategy, whereas puling arm 2 when x < 0 is optimal.
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5. Recent papers

Restricted context

Bouneffouf, D., Rish, I., Cecchi, G. A., & Féraud, R. (2017). Context attentive
bandits: Contextual bandit with restricted context. arXiv preprint arXiv:1705.03821.

Main assumptions: k arms, Bernoulli bandits, context x ∈ Rn, Thompson
sampling, no machine learning algorithm mapping the context to the reward.

How to allocate a limited budget to access a subset of features of the context
variable? Modify the Thompson sampling algorithm by assuming Beta
distributionpoin for each feature, and take the subset giving the largest
prediction.
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5. Recent papers

Nonparametric

Guan, M. Y., & Jiang, H. (2018, April). Nonparametric stochastic contextual bandits.
In Thirty-Second AAAI Conference on Artificial Intelligence.

Main assumptions: 2 arms, context x ∈ R2, UCB
policy, reward functions fi (x) = 1 if x ∈ Ri ,
fi (x) = 0.5 otherwise.

Nonparametric means no strong assumption on the
form of the mapping function.
• (+) flexibility, power, performance,
• (−) more data, slower, prone to overfitting.

eg: k-NN, Decision Trees, Support Vector Machines.

Table 1: Top-arm identification and regret results from Ridge and k-NN regressors. Each model was tuned individually and
optimal hyperparameters are shown. k-NN performs better on both metrics for all three scenarios.

Quintic Function Smiley Bullseye
Ridge kNN Ridge kNN Ridge kNN

Top-Arm Test Error from Uniform Sampling 0.065 0.002 0.080 0.000 0.335 0.005
Number of samples 500k 500k 2k 5000k 100k 500k

Number of neighbors - 100 - 50 - 20

Test Regret from UCB sampling 0.0315 0.001 0.0375 0.0135 0.161 0.004
Number of samples 1k 500k 5k 1000k 50k 1000k

Number of neighbors - 100 - 20 - 100

(a) Quintic (b) Smiley (c) Bullseye

Figure 1: Top-arm boundaries. Red and blue regions corre-
spond to where top-arm is arm 1 and 2 respectively.

(a) Quintic (b) Smiley (c) Bullseye

Figure 2: Observed reward density plots from 10k uniform
samples illustrating pseudo-randomness of training data. In
the colormap (right) warmer colors correspond to higher val-
ues, normalized on the range of the observed rewards.

(a) Quintic Ridge (b) Smiley Ridge (c) Bullseye Ridge

(d) Quintic k-NN (e) Smiley k-NN (f) Bullseye k-NN

Figure 3: Test results on top-arm identification using Ridge
regression and 25-NN regression. Contexts are labeled in red
and blue if arms 1 and 2 are estimated to be top respectively.

Qualitative Analysis We first qualitatively show that k-
NN regression can successfully model the bandits whereas
the linear method cannot. The difficulty of the task is illus-
trated by Figure 2, which plots 10k uniformly sampled sam-
ples from each scenario with a colormap. We can see that a
human would have a hard time recovering the regions where
each arm is top due to the randomness in the observed re-
wards. This randomness is considerable as we set σ = 0.5
to be the same as |fi(x ∈ Ri)− fi(x /∈ Ri)|.

We fix the number of training samples N to 10k and the
number of nearest neighbors to k = 25. We evaluate on 10k
random test samples. Figure 3 shows that k-NN regression
does an excellent job of reproducing the region boundaries.
Ridge regression does a poor job in the Quintic Function
case, making a linear approximation to the quintic curve, and
completely fails in the Smiley and Bullseye Cases, simply
choosing the arm whose top-arm region is larger.

Quantitative Analysis We report numerical results and
optimal hyperparameters in Table 1. We tuned other hyper-
parameters using grid search on a validation set of size 1k
using grid search and we evaluate performance of our mod-
els on a test set of size 1k. We use the UCB strategy in
Auer et al. (2002) (a simplified version of UCB by Agrawal
and Goyal (2013)). We found that a confidence level of 0.1
worked well for all settings. We see that k-NN significantly
outperforms Ridge regression for both top-arm identification
and regret minimization in all three scenarios (Table 1).

Image Classification Experiments
We extend our experiments to image classification of the
canonical MNIST dataset, which consists of 60k training
images and 10k test images of isolated, normalized, hand-
written digits. The task is to classify each 28×28 image into
one of ten classes. We reframe this as a contextual MAB
problem by treating the classes as arms and the images as
the contexts. Note that for every context, the payoff of all
arms are known: 1 if the class is the true label and 0 oth-
erwise. We compare k-NN and Ridge regressions at regret
minimization using the UCB strategy. As before we use the
UCB strategy in Auer et al. (2002) and fix the confidence
level to 0.1. We do not employ any data augmentation.

We obtain test regret of 17.5% from LinUCB with α = 5,
where α is the coefficient of L2 regularization, and signif-
icantly lower test regret of 5.8% from 4-NNUCB. Figure

Figure from the above paper:
top-arm identification using Ridge
regression and 25-NN regression.
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5. Recent papers

Stochastic delays

Zhou, Z., Xu, R., & Blanchet, J. (2019). Learning in generalized linear contextual
bandits with stochastic delays. In Advances in Neural Information Processing Systems
(pp. 5198-5209).

Main assumptions: k arms, linear bandit, context x ∈ Rd , stochastic reward
∈ [0, 1], delayed rewards.

How to take a decision when the reward is delayed in a stochastic way? Develop a
policy based on UCB by deriving properties on the delay, view as a random
variable.
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6. Conclusion

To sum up

This presentation covers:

stochastic bandits: case of Gaussian with unknown mean N (µa, 1),

Bayesian framework: particular case of Bernoulli bandits,

contextual bandits: application on Bernoulli bandits modelled by logistic
regression and univariate context.

The field is way richer:

other frameworks: linear, Lipschitz, adversarial, combinatorial, non-stationary,
ect,

other aspects: convergence, algorithms, policies, etc,

received a lot of attention recently: many papers about multi-armed bandit.

27/28



7. References

References

I Bubeck, S. and Cesa-Bianchi, N. (2012).
Regret analysis of stochastic and nonstochastic multi-armed bandit problems.
arXiv preprint arXiv:1204.5721.

I Lattimore, T. and Szepesvari, C. (2020).
Bandit Algorithms.
Cambridge University Press.

I Slivkins, A. (2019).
Introduction to multi-armed bandits.
arXiv preprint arXiv:1904.07272.

28/28


	Introduction
	Stochastic bandits
	Bayesian framework
	Contextual bandits
	Recent papers
	Conclusion
	References

