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m Multi-armed bandits are everywhere:

clinical trials,

A/B testing,

ad placement,
recommender system,
dynamic pricing,

m There are enjoying a revival, following the latest
booming in reinforcement learning.

m A simple setup, but powerful and very rich
mathematically.

1. Introduction

Drawing showing the idea of pulling
multiple arms.



1. Introduction

General setup

The setup is defined by:

m a finite action set A = {1,2, ..., k} corresponding to the arms,

m for each a € A, there is an unknown distribution P, with mean p,.
From the learner perspective:

m activate arm A; € A and observe a reward R; ~ P,,

m maximise the total reward >"7 | R:.
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An example of unknown distributions and a sequence of actions/rewards.



1. Introduction

Learning objective

m The idea is to find the distribution with the higher mean p*.
m The optimal action is defined as a* = arg max,, (5.
m Strategies are evaluated by a metric called the regret (the lower the better):

Rn=nu* —E

that evaluate the cost of not knowing p*.

m How do we choose the next action? Trade-off exploration vs exploitation.



1. Introduction

Trade-off Exploration vs Exploitation

R
m Exploration: trying different actions to make sure we L) <>r—z
do not miss the best one. I
m Exploitation: choosing the same action over and over t-o0 I*

to maximise our reward. T T

There are two main problems with exploitation:

m The rewards are sampled from a distribution, so even R
the arm with the best mean p* can still provide poor L\ i«-z
rewards sometimes. I+
. _ . I t.T
m Distributions may change with time, and our policy has :
. . . T T T
to adapt. It is the particular case of non-stationary a2 2 3 k

bandits.

Distributions evolving with time.
6/28



1. Introduction

Main types of bandits

. Adversarial
Stochastic i
.. . No assumption on the
iid sequence of random variables N
Algo: e-greedy UCR distribution of the RV
g0 cgreedy VA5, - Algo: EXP3, ...

Algo: Miror descent, EXP2, ...

Linear —__J
Linear structure of the reward |« MAB ﬁ

Contextual Co'\rlllc.:aer k‘c0 Z:‘anr{(!?:;lys:'lc::or
Strategy depends on context (RL) P P poste
Algo: Thomson sampling,
Algo: e-greedy, EXP4, ... e
Gittins indexes, ...




2. Stochastic bandits

Framework

Stochastic assumptions

Let k different arms, and n > k rounds. The probability distribution Py, ..., Py are
unknown. The process is the following:

1. the learner chooses a € {1,..., k},

2. the reward R, is given independently from the past.

Examples of possible distributions:

P, ~ B(uz,): Bernoulli with unknown mean p, € [0, 1],
P, ~ N (j12,1): Gaussian with unit variance and unknown mean p, € R,

P, is sub-Gaussian (tails dominated by Gaussian),



2. Stochastic bandits

e-greedy algorithm

e-greedy policy

At each round the best greedy action is selected (the one the largest empirical
expected reward), but with probability €, a random action is chosen (excluding the
best greedy one). The action A; taken at round t is:

argmax{E[u,]} with probability 1 — €
— a
P =
a randomly with probability e

The greater €, the greater the exploration. Variants exist where € decays with time
to encourage exploration only at the beginning.



2. Stochastic bandits

Example (1/3)

Let 10 arms with Gaussian distribution A/ (p5,1). The algorithm is the following:
1. choose arm according to e-greedy policy,
2. get reward R,: from arm a at time t,

3. update expected reward according to: E[u,] < E[ua] + a(Ra: — E[pa]) with
a=1/T, and T, the number of time action a has been chosen.

Hyperparameters

m e: controls the exploration. High values of € lead to better exploration.

m «: controls the importance given to present rewards as opposed to past ones.
High values of & mean a tendency to forget very quickly. Can be useful for
non-stationary bandits.
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2. Stochastic bandits

Example (2/3)
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Arm chosen (on top), trials per arm (on the left), and Arm chosen (on top), trials per arm (on the left), and
evaluated/real (dot) mean (on the right) for e = 0.1. evaluated/real (dot) mean (on the right) for e = 0.5.
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2. Stochastic bandits

Example (3/3)
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Reward for € € {0.1,0.01,0.001} through 1000 iterations, averaged over 1000 experiences for a 10-armed bandit
with unit variance and unknown means. On the left « is equals to the number of trials per arms whereas on the
right a = 0.1 which enables the learner to quickly learn the new best distribution after a random permutation

between arms that occurs at iteration 500.
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2. Stochastic bandits

Upper Confidence Bound

m Intuition: the more we sample from an arm, the more confident we are in our
evaluation of its mean.

m Using Hoeffding inequality, with u the confidence radius:
P(pu>Eu] +u) < e 2T

If instead, we define § such that:

P(qu[uH Iog2(1/5)> <4

And then, choosing § = 1/t*:
2log(t) 1
P > E — < =
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2. Stochastic bandits

Toward an algorithm: UCB1

UCB1 policy R 4
At each round the arm with the largest Upper Confidence
Bound is selected. 2
,A "‘L
2 log(t L
As = argmax ¢ Efua] + 2log(t) [
a T,
>
A2 k
m When T, increases, our knowledge becomes more accurate .
fid di d Even if the second arm has a
and the confidence radius decreases. better mean, the algorithm
m On the other hand, the confidence radius still increases chooses to pull the first one
here, since it has not tried it

with time t, letting an opportunity for the non top arms to a lot and could still provide

be selected again later on. the best rewards.
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2. Stochastic bandits

Example
I I
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Reward (on the left) and regret (on the right) for UCB1 and e-greedy policies with ¢ = 0.01 through 1000
iterations, averaged over 1000 experiences for a 10-armed bandit with Gaussian (unit variance and unknown
means). Note that, contrary to e-greedy policy, there is no hyperparameter to tune for UCBL1.
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3. Bayesian framework

Framework

Bayesian assumptions

Let k different arms, and n > k rounds. In the Bayesian framework, the probability
distribution Py, ..., Py are likelihoods of the model, depending on a prior. The
process is the following:

1. the learner makes an assumption on the likelihood and prior distributions,

2. the reward R; ~ likelihood provides information to update his belief on the prior
and ultimately the probability distributions Py, ..., Pk

m The Bayesian regret is defined as:

BR = /RdQ

where @ is the prior.
m We usually chose a conjugate prior so that the posterior is tractable.
16/28



3. Bayesian framework

Thompson sampling

Thompson sampling or Posterior sampling

At each round t, sample from the posterior distribution. The arm that gives the
higher result is selected:

A = argmax{P(0,|X,)}
a

where 6 is our prior set of parameters.

Practically speaking, the idea is to update the prior distribution with the posterior
distribution. This means updating our belief on the prior taking into account the
lastest data:

P(X10)P(6)

POIX) = )
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3. Bayesian framework

Example (1/2)

Let a Bernoulli bandit with three arms. This means the likelihood of the model is
Bernoulli distributed. The conjugate prior is the Beta distribution which characterises
our belief on the mean of the Bernoulli law (its unique parameter). In this case, the
posterior is also a Beta distribution.

1. choose arm according to Thompson sampling,
2. get reward R, ¢ ~ B(j,) from arm a at time t,

3. assuming the prior is i, ~ Beta(a, 3), update the posterior distribution
according to:

Beta(a+1,5) if R, =1
,U/a’Ra,t ~ .
Beta(a, B+ 1) if Ryt =0

4. take the posterior as the prior of the next step.
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3. Bayesian framework

Example (2/2)
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Density of the prior of the three arms for different value of t. Note that at the very beginning, the densities
correspond to uniform laws [0, 1] since we do not have any information. With time, your knowledge increases so
the mean of the Bernoulli law we try to evaluate becomes more accurate. Note also, since we want to exploit
the arm giving the best reward, your knowledge becomes more and more precise on this particular arm, leading

to a very narrow distribution (in red).
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4. Contextual bandits

Framework

Contextual assumptions

Let k different arms, and n > k rounds. The probability distribution Pi,..., P, are
unknown but depend on the a context x. The process is the following:

1. the learner observes a context x;,
2. the learner picks an arm a € {1,..., k},

3. the reward R, ; is realised.

m One simple idea is to use independent algorithm for every context.
m The expect reward is now the following:

R = REW(m )—ZN at|xt)

where REW (7*(x)) is the reward of the best pollcy.
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4. Contextual bandits

Example(1/3)

Let a Bernoulli bandit with two arms. In this setup, the context influences the
probabilities of the Bernoulli law of the arms. We model this effect by defining the
probability as a logistic regression of the context x € R, where the parameters 6 are
unknown for the learner and e ~ N(0, 1).

1

Palx) = T

Again, for convenience, the context is only model by a unique variable x, and the
logistic regression has only one parameter.
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Example(2/3)

4. Contextual bandits

The procedure is the following:
1. Observe rewards for different
combinations of arms and contexts.

2. Create a dataset for each arm by taking
subsets of the collected data.

3. Train a model on each dataset
(supervised learning), and predict the
reward for the current context.

4. Pull the arm giving the higher prediction.

Conlext | Aam | Reward
o1 1 A Context | Reward
0.2 A (0] oA 1
oo | 2 0 \| bota 02| ©
0.4 A 1 0.4 1
-01 2 1 0.3 1
0.3 1 1
-0.2 2 1 Context | Reward
0.0 )
dalaset_2 ¢ o1 ;
-0.2 1

Construction of the two datasets through time.
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4. Contextual bandits

Example (3/3)
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The mean of both arms is model as the sigmoid
function of the context x. For x > 0, the best strategy
is to pull arm 1 whereas arm 2 provides the best reward

when x < 0.

Arm chosen (on top) depending on the context
(bottom). Choosing arm 1 for x > 0 leads to a better
strategy, whereas puling arm 2 when x < 0 is optimal.

23/28



5. Recent papers

Restricted context

Bouneffouf, D., Rish, I., Cecchi, G. A., & Féraud, R. (2017). Context attentive
bandits: Contextual bandit with restricted context. arXiv preprint arXiv:1705.03821.

m Main assumptions: k arms, Bernoulli bandits, context x € R”, Thompson
sampling, no machine learning algorithm mapping the context to the reward.

m How to allocate a limited budget to access a subset of features of the context
variable? Modify the Thompson sampling algorithm by assuming Beta
distributionpoin for each feature, and take the subset giving the largest

prediction.
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5. Recent papers

Nonparametric

Guan, M. Y., & Jiang, H. (2018, April). Nonparametric stochastic contextual bandits.
In Thirty-Second AAAI Conference on Artificial Intelligence.

m Main assumptions: 2 arms, context x € R?>, UCB
policy, reward functions fj(x) = 1 if x € R;,
fi(x) = 0.5 otherwise.

m Nonparametric means no strong assumption on the
form of the mapping function.

(a) Quintic Ridge (b) Smiley Ridge (c) Bullseye Ridge

® (4) flexibility, power, performance, (@ Quintic ENN (&) Smiley k-NN (D Bullseye kNN

® (—) more data, slower, prone to overfitting. Figure from the above paper:

eg: k-NN, Decision Trees, Support Vector Machines. top-arm identification using Ridge
regression and 25-NN regression.
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5. Recent papers

Stochastic delays

Zhou, Z., Xu, R., & Blanchet, J. (2019). Learning in generalized linear contextual
bandits with stochastic delays. In Advances in Neural Information Processing Systems

(pp. 5198-5209).

m Main assumptions: k arms, linear bandit, context x € R, stochastic reward
€ [0,1], delayed rewards.

m How to take a decision when the reward is delayed in a stochastic way? Develop a
policy based on UCB by deriving properties on the delay, view as a random

variable.
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6. Conclusion

To sum up

This presentation covers:
m stochastic bandits: case of Gaussian with unknown mean N (u,, 1),
m Bayesian framework: particular case of Bernoulli bandits,

m contextual bandits: application on Bernoulli bandits modelled by logistic
regression and univariate context.

The field is way richer:

m other frameworks: linear, Lipschitz, adversarial, combinatorial, non-stationary,
ect,

m other aspects: convergence, algorithms, policies, etc,

m received a lot of attention recently: many papers about multi-armed bandit.
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