Imperial College
London

Towards Robust and Stable Deep Learning Algorithms for

Forward-Backward Stochastic Differential Equations

Alexis Laignelet

Meetup - Analytics Club - ETH

15/06/20

Contact: acl18@ic.ac.uk

acl18@ic.ac.uk

I am a PhD student in the Computing Department of Imperial College London.

| am supervised by Dr Panos Parpas from the Computational Optimisation
Group. | also work with Dr Nikolas Kantas and Pr Grigorios A. Pavliotis from the
Department of Mathematics.

I am working on smoothing techniques and implicit gradient methods.

| am also doing an internship within JPMorgan Al & Machine Learning.

Dr Panos Parpas Pr Grigorios A. Pavliotis Dr Nikolas Kantas
Department of Computing Department of Mathematics Department of Mathematics
www.doc.ic.ac.uk/~pp500 www.ma.ic.ac.uk/~pavl www.ma.ic.ac.uk/~nkantas

2/20

www.doc.ic.ac.uk/~pp500
www.ma.ic.ac.uk/~pavl
www.ma.ic.ac.uk/~nkantas

About this work

m This is joint work with Batuhan Giiler and Dr Panos
Parpas based on our master thesis.

m We have presented the project at NeurlPS 2019 (in
Vancouver) during the Robust Al in Financial
Services workshop.

m Paper on arXiv:
https://arxiv.org/abs/1910.11623

m Poster on my personal website:
https://alaignelet.github.io/pdfs/
neurips2019_poster.pdf

Vancouver Convention Centre,
December 2019.

https://arxiv.org/abs/1910.11623
https://alaignelet.github.io/pdfs/neurips2019_poster.pdf
https://alaignelet.github.io/pdfs/neurips2019_poster.pdf

Table of contents

1. Introduction

2. Links between PDEs and SDEs

3. Deep Backward Stochastic Differential Equations
4. Stability and generalisation

5. Computational efficiency

6. Conclusion

1. Introduction

Partial Differential Equations

m Partial Differential Equations are everywhere:
® quantum mechanics (Schrédinger),
® classical mechanics (Hamilton-Jacobi),
fluid mechanics (Navier-Stokes),
electromagnetism (Maxwell),
financial mathematics (Black-Scholes),

m There is usually no closed-form solution: numerical
techniques are required.

Turbulent jet due to non-linear terms

m Numerical methods do not scale well with the in Navier-Stokes equation.

dimension: curse of dimensionnality.

2. Links between PDEs and SDEs

Stochastic Differential Equations

Stochastic process

Defined by a stochastic differential equation: 05|, |
dXt = /J;(t,Xt)dt—{—O'(t,Xt)th >€‘
0
where the drift p(t, X;) and the volatility o (t, X;) are
continuous functions, and the Brownian motion W; is ‘
the limit of a random walk when §; — 0. 0 0.5 1

t

Example of stochastic processes: .)
Stochastic processes with constant

m Geometric BM: dX; = uXidt + o XidW; drift and volatility. In black, = 0.1
. do=1wh for the red path
m Ornstein-Uhlenbeck: dX; = —aX;dt + v2DdW; Zn:i and ngaf or e red pa

m Cox-Ingersoll-Ross: dX; = a(b— X;)dt + o/ XedW,

2. Links between PDEs and SDEs

Example: Brownian motion

For the stochastic differential equation dX; = pu(t, X;)dt + o(t, X¢)dW;, the
evolution of the transition probabilities p(s, y;t, x) is ruled by the Fokker-Planck

equation:
0 . _ 9 . 1 82 2 .
atp(suy' t,X)— _ax (M(t,X)p(S,y, t,X))+§8X2 (U (taX)P(Say. t,X))

In the simple case of the Brownian motion dX; = dW;, we obtain the Heat equation
where the solution is the Gaussian distribution.

Plot of 100 different paths from Brownian motion and corresponding distribution at time t = 1.

2. Links between PDEs and SDEs

Non-linear PDEs

Let parabolic non-linear PDEs of the form:

ue = o(t,x, u, Vu) — p(t,x,u, Vu) T Vu — 1Tr [J(t,x, u)o(t, x, u)TV2u}

2

Forward-Backward SDEs

The following forward-backward SDEs:
dXt :,U/(t,Xt, Yt,Zt)dt+U(t,Xt, Yt)th7 XO :€
dYe = o(t, Xz, Ye, Ze)dt + Z o (t, Xe, Ye)dWe, Y7 = g(X7)

Equivalent to the above PDE with Y; = u(t, X:) and Z = Vu(t, X;).
m Xp = £ is the initial condition of the forward equation,

m Y7 = g(X7) is the terminal condition of the backward equation.

8/20

3. Deep Backward Stochastic Differential Equations

Designing a neural network

Ideas:
m train a neural network to map the function Y; = u(t, X}),

m compute Z; = Vu(t, X;) using automatic differentiation from deep learning
libraries.

Euler-Maruyana scheme

The discretisation in time leads to:

Xnt1 = Xn + 1(tn, Xn, Ya, Zn) Aty + o(tn, Xn, Yn)AW,
Yoi1 = Yo+ @(tn, Xn, Y, Zo)At, + ZT 0(tn, Xn, Ya)AW,
AW, ~ N(0, Aty,)

3. Deep Backward Stochastic Differential Equations

Neural network: one time step

Input Hidden Hidden Hidden Hidden Output
layer layer 1 layer 2 layer 3 layer 4 layer

xt @
xt @

| ®
x¢ @

10/20

3. Deep Backward Stochastic Differential Equations

Neural network: N time steps

Yo, Zo —— Y1,y —————— Yn, Zn
Y
‘ Neural network ug ‘ ‘ Neural network ug ‘ . ‘ Neural network ug ‘
(to, Xo) (t1, X1) (tn, Xn)

] |

©: shared parameters through time.

11/20

3. Deep Backward Stochastic Differential Equations

Minimize the approximation error

The loss function is defined as:

M N-1

min > STV () — Yi(©) - ¢(tn, X7, Yi(©), Z1(©)) Aty

m=1 n=0

M
—(Z7(©) T a(ta, X7, YT (O)DAW2 + > [YF(O) — g(XF)I?

m=1

m M: number of trajectories (batch size),

m N: number of time steps.

12/20

3. Deep Backward Stochastic Differential Equations

Example: Black-Scholes equation

Eg: g(x) =||x||? leading to the closed-form solution u(t,x) = e(’+"2)(T_t)||x||2.

102
85 F T T . 1F T T i T =
5 08 TN .
8 | 506 I
> 2> e .

75 | 4 _-:_-'“ 0.4+ l,’ \\ B
—— Exact . Q 0.2 N
----Learned 2 & 4 X

0o \ i 0L \ \ \ \ N

0 02 04 06 O. 1 0 02 04 06 038 1
t t

Experiment with M = 100, N = 50, D = 100, 4 hidden layers of 256 neurons, Adam optimiser. On the left, plot
of two different trajectories (over M = 100). The red ones are the result of the neural network, whereas the
black ones represent the exact solution. On the right, mean relative error (plain black), and mean + 2 standard
deviations (dashed line) over M = 100 trajectories.
13/20

4. Stability and generalisation

ResNet and stability

In a feed forward neural network the next layer is defined by:

x(t+1) = f(x(t),0(t))

where f is a non-linear transformation and 6(t) a set of x
parameters. In a ResNet, the skip connection leads to:
F(x) x
X(t + 1) = X(t) + f(X(t), 0(1’)) identity
F(x)+x

In the limit when step size tends to zero (infinite layers):

Skip connection as presented in

dX(f.’) _ f(X(t), 07 t) the original paper.

dt

This can be studied as an ODE, and stability properties can
be derived.

14/20

4. Stability and generalisation

NAIS-Net: a more sofisticated version

NAIS-Net is a non-autonomous input-output stable neural network:
x(t+1) = x(t) + ho(Ax(t) + Bu + C)

where
m A, B, C are trainable parameters,
m v makes the system non-autonomous and the output input-dependent.

To ensure stability, the weight matrix is constrained to be symmetric definite negative:
A=-R™R—el

where € > 0 is an hyper-parameter to make the eigenvalues strictly negative.
Note that when B = 0 and h = 1 we obtain the original ResNet formulation.

15/20

. Stability and generalisation

Loss functions and generalisation

2 T T T
:\c’\ —— Fully-connected {
‘: 1.5 —— ResNet A
e —A— NAIS-Net 510° |)
o 1 A B
[0) O
> c
E= 0.5 = ,
2 410 |
O | | | | i —
0 0.1 02 03 04 05 .
. . . 10" = >
Relative distance to the initial 0 0.5 1 1.5 2
condition used for training (%) lteration 10

On the left, the generalisation error measured by slightly moving the initial condition, and check the error
afterward. NAIS-Net appears to provide the lowest relative error. On the right, the loss function for the different
architectures. ResNet and NAIS-Net provide a smoother loss function than the fully connected neural network.

16/20

5. Computational efficiency

Multilevel

The discretization scheme, at level /, is:

Xnt1 = Xn + p(tn, Xn)h + o(tn, Xn) AW,

where h; = hgM~" with hg the initial step size and M the ratio between two levels.

Warm up procedure:

1. Start with large initial temporal step size At = hg and train the model until the
loss does not decrease substantially.

2. Decrease the step size according to hy = hgM~'.

3. Retrain the model until the loss does not decrease substantially.

4. Repeat steps 2. and 3.

17/20

5. Computational efficiency

Speed-up

150 — . :
I Single-level 123
L1p b 1 Multi-level
/ 73
—_ X: |
level 1 |
level 2 |
level 3 ! Ll
‘ |
0 0.2 0.4 0.6 0.8 1 Fully- ResNet NAIS-Net
t connected

On the left, different levels of the same stochastic path. The construction of more discretised paths is based on
Brownian bridge. On the right, the average time to train the neural network (4 layers of 256 neurons) for the
three studied architectures and using the multilevel technique. The convergence is roughly 10 times faster.

18/20

6. Conclusion

Achievements and future work

Achievements:

m reviewed the recent proposals for the solution of high-dimensional PDEs using
deep learning,

m understood better stability, robustness and generalisation,
m adopted the dynamical view of the problem and showed NAIS-Net well perform,

m improved time computation by order of magnitude using multilevel technique.
Future work:

m use more advance discretisation techniques,
m improve sampling methods,

m try other terminal conditions, other differential equations.

19/20

7. References

References

» Gobet, E. (2016).
Monte-Carlo methods and stochastic processes: from linear to non-linear.
CRC Press.

» Henry-Labordere, P. (2017).
Deep primal-dual algorithm for bsdes: Applications of machine learning to cva and
im.
Available at SSRN 3071506.
» Raissi, M. (2018).
Forward-backward stochastic neural networks: Deep learning of high-dimensional

partial differential equations.
arXiv preprint arXiv:1804.07010.

20/20

	Introduction
	Links between PDEs and SDEs
	Deep Backward Stochastic Differential Equations
	Stability and generalisation
	Computational efficiency
	Conclusion
	References

