
Towards Robust and Stable Deep Learning Algorithms for
Forward-Backward Stochastic Differential Equations

Alexis Laignelet

Imperial College London

22/09/20

Contact: acl18@ic.ac.uk

acl18@ic.ac.uk


About me

I am a PhD student in the Computing Department of Imperial College London.

I am supervised by Dr Panos Parpas from the Computational Optimisation
Group. I also work with Dr Nikolas Kantas and Pr Grigorios A. Pavliotis from the
Department of Mathematics.

I am working on smoothing techniques and implicit gradient methods.

I am also doing an internship within JPMorgan AI & Machine Learning.

Dr Panos Parpas
Department of Computing
www.doc.ic.ac.uk/~pp500

Pr Grigorios A. Pavliotis
Department of Mathematics
www.ma.ic.ac.uk/~pavl

Dr Nikolas Kantas
Department of Mathematics
www.ma.ic.ac.uk/~nkantas

2/20

www.doc.ic.ac.uk/~pp500
www.ma.ic.ac.uk/~pavl
www.ma.ic.ac.uk/~nkantas


About this work

This is joint work with Batuhan Güler and Dr Panos
Parpas based on our master thesis.

We have presented the project at NeurIPS 2019 (in
Vancouver) during the Robust AI in Financial
Services workshop.

Paper on arXiv:
https://arxiv.org/abs/1910.11623

Poster on my personal website:
https://alaignelet.github.io/pdfs/

neurips2019_poster.pdf Vancouver Convention Centre,
December 2019.

3/20

https://arxiv.org/abs/1910.11623
https://alaignelet.github.io/pdfs/neurips2019_poster.pdf
https://alaignelet.github.io/pdfs/neurips2019_poster.pdf


Table of contents

1. Introduction

2. Links between PDEs and SDEs

3. Deep Backward Stochastic Differential Equations

4. Stability and generalisation

5. Computational efficiency

6. Conclusion

4/20



1. Introduction

Partial Differential Equations

Partial Differential Equations are everywhere:
• quantum mechanics (Schrödinger),
• classical mechanics (Hamilton-Jacobi),
• fluid mechanics (Navier-Stokes),
• electromagnetism (Maxwell),
• financial mathematics (Black-Scholes),
• . . .

There is usually no closed-form solution: numerical
techniques are required.

Numerical methods do not scale well with the
dimension: curse of dimensionnality.

Turbulent jet due to non-linear terms
in Navier-Stokes equation.

5/20



2. Links between PDEs and SDEs

Stochastic Differential Equations

Stochastic process

Defined by a stochastic differential equation:

dXt = µ(t,Xt)dt + σ(t,Xt)dWt

where the drift µ(t,Xt) and the volatility σ(t,Xt) are
continuous functions, and the Brownian motion Wt is
the limit of a random walk when δt → 0.

Example of stochastic processes:

Geometric BM: dXt = µXtdt + σXtdWt

Ornstein-Uhlenbeck: dXt = −αXtdt +
√

2DdWt

Cox-Ingersoll-Ross: dXt = α(b−Xt)dt +σ
√
XtdWt

0 0.5 1

0

0.5

t

X
t

Stochastic processes with constant
drift and volatility. In black, µ = 0.1
and σ = 1 whereas for the red path
µ = 1 and σ = 0.1.

6/20



2. Links between PDEs and SDEs

Example: Brownian motion

For the stochastic differential equation dXt = µ(t,Xt)dt + σ(t,Xt)dWt , the
evolution of the transition probabilities p(s, y ; t, x) is ruled by the Fokker-Planck
equation:

∂

∂t
p(s, y ; t, x) = − ∂

∂x
(µ(t, x)p(s, y ; t, x)) +

1

2

∂2

∂x2

(
σ2(t, x)p(s, y ; t, x)

)
In the simple case of the Brownian motion dXt = dWt , we obtain the Heat equation
where the solution is the Gaussian distribution.

0 0.5 1 1.5

−2

0

2

W
t

Plot of 100 different paths from Brownian motion and corresponding distribution at time t = 1.
7/20



2. Links between PDEs and SDEs

Non-linear PDEs

Let parabolic non-linear PDEs of the form:

ut = ϕ(t, x , u,∇u)− µ(t, x , u,∇u)T∇u − 1

2
Tr
[
σ(t, x , u)σ(t, x , u)T∇2u

]
Forward-Backward SDEs

The following forward-backward SDEs:

dXt = µ(t,Xt ,Yt ,Zt)dt + σ(t,Xt ,Yt)dWt , X0 = ξ

dYt = ϕ(t,Xt ,Yt ,Zt)dt + ZT
t σ(t,Xt ,Yt)dWt , YT = g(XT )

Equivalent to the above PDE with Yt = u(t,Xt) and Zt = ∇u(t,Xt).

X0 = ξ is the initial condition of the forward equation,

YT = g(XT ) is the terminal condition of the backward equation.

8/20



3. Deep Backward Stochastic Differential Equations

Designing a neural network

Ideas:

train a neural network to map the function Yt = u(t,Xt),

compute Zt = ∇u(t,Xt) using automatic differentiation from deep learning
libraries.

Euler-Maruyana scheme

The discretisation in time leads to:

Xn+1 ≈ Xn + µ(tn,Xn,Yn,Zn)∆tn + σ(tn,Xn,Yn)∆Wn

Yn+1 ≈ Yn + ϕ(tn,Xn,Yn,Zn)∆tn + ZT
n σ(tn,Xn,Yn)∆Wn

∆Wn ∼ N (0, ∆tn)

9/20



3. Deep Backward Stochastic Differential Equations

Neural network: one time step

X 1
t

X 2
t

X d
t

t

...

...
...

...
...

Yt

Hidden
layer 1

Hidden
layer 2

Hidden
layer 3

Hidden
layer 4

Input
layer

Output
layer

[256] [256] [256] [256][D+1] [1]

Architecture of the neural network

10/20



3. Deep Backward Stochastic Differential Equations

Neural network: N time steps

Y0,Z0

Neural network uΘ

(t0, X0)

Y1,Z1

Neural network uΘ

(t1, X1)

. . .

YN ,ZN

Neural network uΘ

(tN , XN)

Θ: shared parameters through time.

11/20



3. Deep Backward Stochastic Differential Equations

Minimize the approximation error

Loss function

The loss function is defined as:

min
Θ

M∑
m=1

N−1∑
n=0

|Ym
n+1(Θ)− Ym

n (Θ)− ϕ(tn,X
m
n ,Y

m
n (Θ),Zm

n (Θ))∆tn

− (Zm
n (Θ))Tσ(tn,X

m
n ,Y

m
n (Θ))∆Wm

n |2 +
M∑

m=1

|Ym
N (Θ)− g(Xm

N )|2

M: number of trajectories (batch size),

N: number of time steps.

12/20



3. Deep Backward Stochastic Differential Equations

Example: Black-Scholes equation

Eg: g(x) =‖x‖2 leading to the closed-form solution u(t, x) = e(r+σ2)(T−t)‖x‖2.

0 0.2 0.4 0.6 0.8 1

70

75

80

85

t

Y
t

Exact

Learned

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
·10−2

t

R
el

at
iv

e
er

ro
r

Experiment with M = 100, N = 50, D = 100, 4 hidden layers of 256 neurons, Adam optimiser. On the left, plot
of two different trajectories (over M = 100). The red ones are the result of the neural network, whereas the
black ones represent the exact solution. On the right, mean relative error (plain black), and mean + 2 standard
deviations (dashed line) over M = 100 trajectories.

13/20



4. Stability and generalisation

ResNet and stability

In a feed forward neural network the next layer is defined by:

x(t + 1) = f (x(t), θ(t))

where f is a non-linear transformation and θ(t) a set of
parameters. In a ResNet, the skip connection leads to:

x(t + 1) = x(t) + f (x(t), θ(t))

In the limit when step size tends to zero (infinite layers):

dx(t)

dt
= f (x(t), θ, t)

This can be studied as an ODE, and stability properties can
be derived.

identity

weight layer

weight layer

relu

relu

F(x) + x

x

F(x)
x

Figure 2. Residual learning: a building block.

are comparably good or better than the constructed solution
(or unable to do so in feasible time).

In this paper, we address the degradation problem by
introducing a deep residual learning framework. In-
stead of hoping each few stacked layers directly fit a
desired underlying mapping, we explicitly let these lay-
ers fit a residual mapping. Formally, denoting the desired
underlying mapping as H(x), we let the stacked nonlinear
layers fit another mapping of F(x) := H(x)−x. The orig-
inal mapping is recast intoF(x)+x. We hypothesize that it
is easier to optimize the residual mapping than to optimize
the original, unreferenced mapping. To the extreme, if an
identity mapping were optimal, it would be easier to push
the residual to zero than to fit an identity mapping by a stack
of nonlinear layers.

The formulation of F(x)+x can be realized by feedfor-
ward neural networks with “shortcut connections” (Fig. 2).
Shortcut connections [2, 34, 49] are those skipping one or
more layers. In our case, the shortcut connections simply
perform identity mapping, and their outputs are added to
the outputs of the stacked layers (Fig. 2). Identity short-
cut connections add neither extra parameter nor computa-
tional complexity. The entire network can still be trained
end-to-end by SGD with backpropagation, and can be eas-
ily implemented using common libraries (e.g., Caffe [19])
without modifying the solvers.

We present comprehensive experiments on ImageNet
[36] to show the degradation problem and evaluate our
method. We show that: 1) Our extremely deep residual nets
are easy to optimize, but the counterpart “plain” nets (that
simply stack layers) exhibit higher training error when the
depth increases; 2) Our deep residual nets can easily enjoy
accuracy gains from greatly increased depth, producing re-
sults substantially better than previous networks.

Similar phenomena are also shown on the CIFAR-10 set
[20], suggesting that the optimization difficulties and the
effects of our method are not just akin to a particular dataset.
We present successfully trained models on this dataset with
over 100 layers, and explore models with over 1000 layers.

On the ImageNet classification dataset [36], we obtain
excellent results by extremely deep residual nets. Our 152-
layer residual net is the deepest network ever presented on
ImageNet, while still having lower complexity than VGG
nets [41]. Our ensemble has 3.57% top-5 error on the

ImageNet test set, and won the 1st place in the ILSVRC
2015 classification competition. The extremely deep rep-
resentations also have excellent generalization performance
on other recognition tasks, and lead us to further win the
1st places on: ImageNet detection, ImageNet localization,
COCO detection, and COCO segmentation in ILSVRC &
COCO 2015 competitions. This strong evidence shows that
the residual learning principle is generic, and we expect that
it is applicable in other vision and non-vision problems.

2. Related Work

Residual Representations. In image recognition, VLAD
[18] is a representation that encodes by the residual vectors
with respect to a dictionary, and Fisher Vector [30] can be
formulated as a probabilistic version [18] of VLAD. Both
of them are powerful shallow representations for image re-
trieval and classification [4, 48]. For vector quantization,
encoding residual vectors [17] is shown to be more effec-
tive than encoding original vectors.

In low-level vision and computer graphics, for solv-
ing Partial Differential Equations (PDEs), the widely used
Multigrid method [3] reformulates the system as subprob-
lems at multiple scales, where each subproblem is respon-
sible for the residual solution between a coarser and a finer
scale. An alternative to Multigrid is hierarchical basis pre-
conditioning [45, 46], which relies on variables that repre-
sent residual vectors between two scales. It has been shown
[3, 45, 46] that these solvers converge much faster than stan-
dard solvers that are unaware of the residual nature of the
solutions. These methods suggest that a good reformulation
or preconditioning can simplify the optimization.

Shortcut Connections. Practices and theories that lead to
shortcut connections [2, 34, 49] have been studied for a long
time. An early practice of training multi-layer perceptrons
(MLPs) is to add a linear layer connected from the network
input to the output [34, 49]. In [44, 24], a few interme-
diate layers are directly connected to auxiliary classifiers
for addressing vanishing/exploding gradients. The papers
of [39, 38, 31, 47] propose methods for centering layer re-
sponses, gradients, and propagated errors, implemented by
shortcut connections. In [44], an “inception” layer is com-
posed of a shortcut branch and a few deeper branches.

Concurrent with our work, “highway networks” [42, 43]
present shortcut connections with gating functions [15].
These gates are data-dependent and have parameters, in
contrast to our identity shortcuts that are parameter-free.
When a gated shortcut is “closed” (approaching zero), the
layers in highway networks represent non-residual func-
tions. On the contrary, our formulation always learns
residual functions; our identity shortcuts are never closed,
and all information is always passed through, with addi-
tional residual functions to be learned. In addition, high-

2

Skip connection as presented in
the original paper.

14/20



4. Stability and generalisation

NAIS-Net: a more sofisticated version

NAIS-Net is a non-autonomous input-output stable neural network:

x(t + 1) = x(t) + hσ(Ax(t) + Bu + C )

where

A,B,C are trainable parameters,

u makes the system non-autonomous and the output input-dependent.

To ensure stability, the weight matrix is constrained to be symmetric definite negative:

A = −RTR − εI

where ε > 0 is an hyper-parameter to make the eigenvalues strictly negative.
Note that when B = 0 and h = 1 we obtain the original ResNet formulation.

15/20



4. Stability and generalisation

Loss functions and generalisation

0 0.1 0.2 0.3 0.4 0.5

0

0.5

1

1.5

2

Relative distance to the initial
condition used for training (%)

R
el

at
iv

e
er

ro
r

(%
)

Fully-connected

ResNet

NAIS-Net

0 0.5 1 1.5 2

·104

101

103

105

Iteration

L
os

s
fu

n
ct

io
n

On the left, the generalisation error measured by slightly moving the initial condition, and check the error
afterward. NAIS-Net appears to provide the lowest relative error. On the right, the loss function for the different
architectures. ResNet and NAIS-Net provide a smoother loss function than the fully connected neural network.

16/20



5. Computational efficiency

Multilevel

Discretization

The discretization scheme, at level l , is:

Xn+1 = Xn + µ(tn,Xn)h + σ(tn,Xn)∆Wn

where hl = h0M
−l with h0 the initial step size and M the ratio between two levels.

Warm up procedure:

1. Start with large initial temporal step size ∆t = h0 and train the model until the
loss does not decrease substantially.

2. Decrease the step size according to hl = h0M
−l .

3. Retrain the model until the loss does not decrease substantially.

4. Repeat steps 2. and 3.

17/20



5. Computational efficiency

Speed-up

0 0.2 0.4 0.6 0.8 1
0.7

0.8

0.9

1

1.1

t

X
t

Xt

level 1

level 2

level 3

Fully-
connected

ResNet NAIS-Net
0

50

100

150

59
73

123

6 7 11

T
im

e
(m

in
)

Single-level

Multi-level

On the left, different levels of the same stochastic path. The construction of more discretised paths is based on
Brownian bridge. On the right, the average time to train the neural network (4 layers of 256 neurons) for the
three studied architectures and using the multilevel technique. The convergence is roughly 10 times faster.

18/20



6. Conclusion

Achievements and future work

Achievements:

reviewed the recent proposals for the solution of high-dimensional PDEs using
deep learning,

understood better stability, robustness and generalisation,

adopted the dynamical view of the problem and showed NAIS-Net well perform,

improved time computation by order of magnitude using multilevel technique.

Future work:

use more advance discretisation techniques,

improve sampling methods,

try other terminal conditions, other differential equations.

19/20



7. References

References

I Gobet, E. (2016).
Monte-Carlo methods and stochastic processes: from linear to non-linear.
CRC Press.

I Henry-Labordere, P. (2017).
Deep primal-dual algorithm for bsdes: Applications of machine learning to cva and
im.
Available at SSRN 3071506.

I Raissi, M. (2018).
Forward-backward stochastic neural networks: Deep learning of high-dimensional
partial differential equations.
arXiv preprint arXiv:1804.07010.

20/20


	Introduction
	Links between PDEs and SDEs
	Deep Backward Stochastic Differential Equations
	Stability and generalisation
	Computational efficiency
	Conclusion
	References

